skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nielsen, Kaitlyn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The inflammation marker Interleukin 6 (IL-6) typically remains below 5 pg/mL in the serum of healthy individuals but can increase tenfold during inflammation in chronic conditions like COVID-19 and rheumatoid arthritis, as well as acute conditions like sepsis. This study is focused on the rapid detection of IL-6 to monitor both chronic and acute diseases. The novel sensor, designed with gold-coated micropyramids on the electrodes, was fabricated using the two-photon polymerization method, enabling low-volume sensing capabilities (2-3 μL). The micropyramids were surface functionalized with interleukin-6 antibodies towards developing an affinity biosensor specific to the physiological relevant range of IL-6 of 5.1 and 18.8 pg/mL in mild inflammation. Sensing was achieved by measuring impedance changes associated with IL-6 binding to the antibodies on the micropyramids interfaced using electrochemical impedance spectroscopy. It was observed that the signals from the lowest detection concentration was enhanced by 3 times at 1500 hz when the 532 nm green laser was incident on the micropyramids. This innovative approach can be expanded to the detection of cytokines not only in serum but also in respiratory samples. As a result, it opens up new avenues for monitoring local inflammation within the lungs and assessing systemic inflammation levels throughout the body. 
    more » « less